Low dose interpolated average CT for thoracic PET/CT attenuation correction using an active breathing controller.
نویسندگان
چکیده
PURPOSE The temporal mismatch between PET and standard helical CT (HCT) causes substantial respiratory artifacts in PET reconstructed images when using HCT as the attenuation map. Previously we developed an interpolated average CT (IACT) method for attenuation correction (AC) and demonstrated its merits in simulations. In this study we aim to apply IACT in patients with thoracic lesions using an active breathing controller (ABC). METHODS Under local ethics approval, we recruited 15 patients with a total of 18 lesions in different thoracic regions: left upper lobe (2), right upper lobe (4), right hilum (3), right lower lobe (3), left hilum (2), and esophagus (4). All patients underwent whole body PET scans 1 h after 300-480 MBq (18)F-FDG injection, depending on the patients' weight. The PET sinograms were reconstructed with AC using: (i) standard HCT [120 kV, smart mA (30-150 mA), 0.984:1 pitch] and (ii) IACT obtained from end-inspiration and end-expiration breath-hold HCTs (120 kV, 10 mA, 0.984:1 pitch) aided by ABC. IACT was obtained by averaging the intensity of two extreme phases and the interpolated phases between them, where the nonlinear interpolation was obtained by B-spline registration and with an empirical sinusoidal function. The SUV max, SUV mean, and the differences of centroid-of-lesion (d) between PET and different CT schemes were measured for each lesion. RESULTS From visual inspection, the respiratory artifacts and blurring generally reduced in the thoracic region for PET IACT. Matching between CT and PET improved for PET IACT, with an average decrease of d for 1.34 ± 1.79 mm as compared to PET HCT. The SUV max and SUV mean were consistently higher for PET IACT versus PET HCT for all lesions, with (30.95 ± 18.63)% and (22.39 ± 15.91)% average increase, respectively. CONCLUSIONS IACT-ABC reduces respiratory artifacts, PET/CT misregistration and enhances lesion quantitation. This technique is a robust and low dose AC protocol for clinical oncology application especially in the thoracic region.
منابع مشابه
Thoracic Tumor Volume Delineation in 4D-PET/CT by Low Dose Interpolated CT for Attenuation Correction
PURPOSE 4D-PET/CT imaging is an excellent solution for reducing the breathing-induced effects in both CT and PET images. In 4D-PET/CT, 4D-CT images are selected to match those of 4D-PET phase by phase and the corresponding phases are used for attenuation correction in 4D-PET. However, the high radiation dose that patients acquire while undergoing 4D-CT imaging for diagnostic purposes remains a ...
متن کاملEstimation of fetal absorbed dose from low-dose attenuation-correction CT in PET / CT imaging by using the Body Builder Phantom
One of the methods of studying the physiology and metabolism of important tissues such as the heart, brain and cancer tumors is the use of PET/CT System. A small number of patients are pregnant women who undergo a PET/CT scan due to lack of knowledge about pregnancy or due to dire clinical need. The final dose received by the fetus is based on three factors: the absorbed dose of the fetal tissu...
متن کاملImprovement of Internal Tumor Volumes of Non-Small Cell Lung Cancer Patients for Radiation Treatment Planning Using Interpolated Average CT in PET/CT
Respiratory motion causes uncertainties in tumor edges on either computed tomography (CT) or positron emission tomography (PET) images and causes misalignment when registering PET and CT images. This phenomenon may cause radiation oncologists to delineate tumor volume inaccurately in radiotherapy treatment planning. The purpose of this study was to analyze radiology applications using interpola...
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملA novel dual energy CT-based attenuation correction method in PET/CT systems: A phantom study
In present PET/CT scanners, PET attenuation correction is performed by relying on the information given by CT scan. In the CT-based attenuation correction methods, dual-energy technique (DECT) is the most accurate approach, which has been limited due to the increasing patient dose. In this feasibility study, we have introduced a new method that can implement dual-en...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 40 10 شماره
صفحات -
تاریخ انتشار 2013